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Abstract

We introduce a novel approach for the hyperbolization of the well-known two-phase six-
equation flow model. The six-equation model has been frequently used in many two-phase
flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this
model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical
instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues
that correspond to characteristic matrix of the system. Complex eigenvalues are often due
to certain flow parameter choices such as the definition of inter-facial pressure terms. In our
method, we prevent the characteristic matrix receiving complex eigenvalues by fine tuning
the inter-facial pressure terms with an iterative procedure. In this way, the characteristic
matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real
therefore the overall two-phase flow model becomes hyperbolic. The main advantage of this
is that one can apply less diffusive highly accurate high resolution numerical schemes that
often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic
models are discretized mainly based on low order highly dissipative numerical techniques
in order to avoid stability issues.
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1 Governing Equations

Six-equation model for two-phase flows can be written as mass, momentum, and
energy balances for each phases;
Phase-1:

∂

∂t
[α1ρ1] +

∂

∂x
[α1ρ1u1] = 0, (1)

∂

∂t
[α1ρ1u1] +

∂

∂x
[α1ρ1u

2
1 + α1p] = pI

∂α1

∂x
, (2)

∂

∂t
[α1E1] +

∂

∂x
[α1(E1 + p)u1] = −p[

∂α1

∂t
+ uI

∂α1

∂x
] + uIpI

∂α1

∂x
, (3)

Phase-2:
∂

∂t
[α2ρ2] +

∂

∂x
[α2ρ2u2] = 0, (4)

∂

∂t
[α2ρ2u2] +

∂

∂x
[α2ρ2u

2
2 + α2p] = pI

∂α2

∂x
, (5)

∂

∂t
[α2E2] +

∂

∂x
[α2(E2 + p)u2] = −p[

∂α2

∂t
+ uI

∂α2

∂x
] + uIpI

∂α2

∂x
, (6)

where αi is the volume fraction of phase-i, ρi, ui, and Ei are the density, velocity,
and total energy of phase-i, p is the single pressure of the two-phase system, pI =
p − Δp is referred to as the inter-facial pressure term with Δp = α1ρ2(u1 − u2)

2,
and uI = ui for each phase (Theofanous et al ASME report [2]). Note : Saurel et
al defines uI =

α1ρ1u1+α2ρ2u2

α1ρ1+α2ρ2
in their seven-equation model [3].

We can rewrite Eqs (1)-(6) in a more compact vector form by grouping mass, mo-
mentum, and energy terms for phase 1 and 2;

∂U

∂t
+

∂F

∂x
= S, (7)

where

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1ρ1

α2ρ2

α1ρ1u1

α2ρ2u2

α1E1

α2E2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1ρ1u1

α2ρ2u2

α1ρ1u
2
1 + α1p

α2ρ2u
2
2 + α2p

α1(E1 + p)u1

α2(E2 + p)u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

pI
∂α1

∂x

pI
∂α2

∂x

−p[∂α1

∂t
+ uI

∂α1

∂x
] + uIpI

∂α1

∂x

−p[∂α2

∂t
+ uI

∂α2

∂x
] + uIpI

∂α2

∂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we introduce a vector V = (α1, p, u1, u2, e1, e2) consisting of the primitive vari-
ables (e.g, e1 = (E1 − 1/2ρ1u

2
1)/ρ1) and recall that α2 = 1 − α1 and c2i =(

∂p
∂ρi

)
|i=1,2, then (7) becomes

∂U

∂V

∂V

∂t
+

∂F

∂V

∂V

∂x
= St∂V

∂t
+ Sx∂V

∂x
, (8)

where
∂U

∂V
=

(
∂ui

∂vj
|i,j=1,2,3

)
,

∂F

∂V
=

(
∂fi
∂vj

|i,j=1,2,3

)

are the Jacobian matrices of the transformation (refer to Table 1), and

St =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−p 0 0 0 0 0

p 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Table 1. Jacobian matrices of the transformation used in (8).

∂U
∂V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1
α1

c2
1

0 0 0 0

−ρ2
(1−α1)

c2
2

0 0 0 0

ρ1u1
α1u1

c2
1

α1ρ1 0 0 0

−ρ2u2
(1−α1)u2

c2
2

0 (1− α1)ρ2 0 0

ρ1e1 +
ρ1u2

1

2
α1(e1+1/2u2

1
)

c2
1

α1ρ1u1 0 α1ρ1 0

−(ρ2e2 +
ρ2u2

2

2 )
(1−α1)(e2+1/2u2

2
)

c2
2

0 (1− α1)ρ2u2 0 (1− α1)ρ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∂F
∂V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1u1
α1u1

c2
1

α1ρ1 0 0 0

−ρ2u2
(1−α1)u2

c2
2

0 (1− α1)ρ2 0 0

ρ1u
2
1 + p α1(1 +

u2

1

c2
1

) 2α1ρ1u1 0 0 0

−(ρ2u
2
2 + p) (1− α1)(1 +

u2

2

c2
2

) 0 2(1− α1)ρ2u2 0 0

(ρ1e1 +
ρ1u2

1

2 + p)u1 α1u1(
(e1+1/2u2

1
)

c2
1

+ 1) α1(ρ1e1 +
3ρ1u2

1

2 + p) 0 α1ρ1u1 0

−(ρ2e2 +
ρ2u2

2

2 + p)u2 (1− α1)u2(
(e2+1/2u2

2
)

c2
2

+ 1) 0 (1− α1)(ρ2e2 +
3ρ2u2

2

2 + p) 0 (1− α1)ρ2u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Sx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

pI 0 0 0 0 0

−pI 0 0 0 0 0

−uI(p− pI) 0 0 0 0 0

uI(p− pI) 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Grouping like terms together in (8), we have
(
∂U

∂V
− St

)
∂V

∂t
+

(
∂F

∂V
− Sx

)
∂V

∂x
= 0, (9)

Equivalently, (9) can be written as

∂V

∂t
+ A

∂V

∂x
= 0, (10)

where A =
(
∂U
∂V

− St
)−1 (

∂F
∂V

− Sx
)
. From the hyperbolic theory, we know that the

real eigenvalues of A correspond to characteristic wave speeds of the system. To
find the eigenvalues of A, we have to find the roots of the following characteristic
polynomial,

|A− λI6| = 0, (11)
where I6 is the 6× 6 identity matrix. Notice from Table 2 that the matrix A has the
following form

A =

⎛
⎜⎜⎜⎜⎜⎝
B 0 0

· · · u1 0

· · · 0 u2

⎞
⎟⎟⎟⎟⎟⎠ ,

meaning that the two immediate roots of (11) are λ1 = u1, λ2 = u2. Therefore
the eigenvalue problem (11) reduces to finding the roots of the following quartic
polynomial

P (λ) = |B − λI4| = 0. (12)

We introduce the following identities:

c2m =
c21c

2
2(α1ρ2 + (1− α1)ρ1)

(1− α1)c21ρ1 + α1c22ρ2
(mixture sound speed) (13)
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Table 2. Matrices used in (11) and (12).

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1−α1)c21ρ1u1+α1c22ρ2u2

(1−α1)c21ρ1+α1c22ρ2

(1−α1)α1(u1−u2)
(1−α1)c21ρ1+α1c22ρ2

(1−α1)α1c21ρ1
(1−α1)c21ρ1+α1c22ρ2

−(1−α1)α1c22ρ2
α1c22ρ2+(1−α1)c21ρ1

0 0

c2
1
c2
2
ρ1ρ2(u1−u2)

(1−α1)c21ρ1+α1c22ρ2

(1−α1)c21ρ1u2+α1c22ρ2u1

(1−α1)c21ρ1+α1c22ρ2

α1c21c
2

2
ρ1ρ2

α1c22ρ2+(1−α1)c21ρ1

(1−α1)c21c
2

2
ρ1ρ2

(1−α1)c21ρ1+α1c22ρ2
0 0

p−pI
α1ρ1

1
ρ1

u1 0 0 0

−(p−pI)
(1−α1)ρ2

1
ρ2

0 u2 0 0

c2
2
pρ2(u1−u2)

ρ1((1−α1)c21ρ1+α1c22ρ2)
− (1−α1)p(u1−u2)

ρ1((1−α1)c21ρ1+α1c22ρ2)
α1c22pρ2

ρ1(α1c22ρ2+(1−α1)c21ρ1)
(1−α1)c22pρ2

ρ1((1−α1)c21ρ1+α1c22ρ2)
u1 0

c2
1
pρ1(u1−u2)

ρ2(α1c22ρ2+(1−α1)c21ρ1)
α1p(u1−u2)

ρ2(α1c22ρ2+(1−α1)c21ρ1)
α1c21pρ1

ρ2(α1c22ρ2+(1−α1)c21ρ1)
(1−α1)c21pρ1

ρ2((1−α1)c21ρ1+α1c22ρ2)
0 u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(1−α1)c21ρ1u1+α1c22ρ2u2

(1−α1)c21ρ1+α1c22ρ2

(1−α1)α1(u1−u2)
(1−α1)c21ρ1+α1c22ρ2

(1−α1)α1c21ρ1
(1−α1)c21ρ1+α1c22ρ2

−(1−α1)α1c22ρ2
α1c22ρ2+(1−α1)c21ρ1

c2
1
c2
2
ρ1ρ2(u1−u2)

(1−α1)c21ρ1+α1c22ρ2

(1−α1)c21ρ1u2+α1c22ρ2u1

(1−α1)c21ρ1+α1c22ρ2

α1c21c
2

2
ρ1ρ2

α1c22ρ2+(1−α1)c21ρ1

(1−α1)c21c
2

2
ρ1ρ2

(1−α1)c21ρ1+α1c22ρ2

p−pI
α1ρ1

1
ρ1

u1 0

−(p−pI)
(1−α1)ρ2

1
ρ2

0 u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Y =
λ− (u1 + u2)/2

cm
,

M =
u1 − u2

2cm
,

Ka=
α1Δp+ (1− α1)c

2
1ρ1

(α1ρ2 + (1− α1)ρ1)c21
,

Kb =
(1− α1)Δp+ α1c

2
2ρ2

(α1ρ2 + (1− α1)ρ1)c22
,

Kc=
Δp

(α1ρ2 + (1− α1)ρ1)c2m
. (14)

Using (13) and (14) in (12), we obtain

(Y −M)2(Y +M)2 −Ka(Y −M)2 −Kb(Y +M)2 +Kc = 0. (15)

This can further simplify to

Y 4 + p̄Y 2 + q̄Y + r̄ = 0, (16)

where p̄ = −2M2−Ka−Kb, q̄ = 2(Ka−Kb)M , and r̄ = M4+Kc−(Ka+Kb)M
2.

Notice that the coefficients of this quartic equation can be interpreted as they are
functions of Δp (e.g, p̄ = p̄(Δp), q̄ = q̄(Δp), r̄ = r̄(Δp). In general, Eq. (16)
can accept four real, two real and one complex pair, or two complex pair roots.
We are interested in all real roots. In literature, number of criterions/conditions on
these coefficients have been derived under which all four roots become real. A well
known methodology is due to Abramowitz Stegun [1]. However, all-real-roots con-
ditions can be several pages long complicated algebraic expressions that are not
necessarily simple to implement in a computer code. In this paper, we iteratively
perturb Δp up-to certain level where the equation accepts all real roots. Recall that
Δp = p−pI can be viewed as the perturbed pressure field by some amount. Before
going into details of our procedure, we would like to briefly remind ourselves the
classic methodology of finding the general roots of a quartic equation. The proce-
dure was first introduced by a famous mathematician Lodovico Ferrari in fifteenth
century. His first observation was that if q̄ = 0, then we have a biquadratic equation
that can be easily solved;

Y1,2,3,4 = ±
√
−p̄±√

p̄2 − 4r̄

2
, (17)

otherwise, the roots of the quartic equation can be related to the roots of the follow-
ing depressed or resolvent cubic equation,

Z3 + PZ +Q = 0, (18)

where P = − p̄2

12
− r̄ and Q = − p̄3

108
+ p̄r̄

3
− q̄2

8
. A method for finding the roots

of a cubic equation was introduced by Geralamo Cardano (L. Ferrari’s mentor).
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Cardano’s method provides three roots for (18) as

Z1 = u+ v, Z2 = −u + v

2
+ i

u− v

2

√
3, Z3 = −u+ v

2
− i

u− v

2

√
3, (19)

where

u =
3

√√√√−Q

2
±

√
Q2

4
+

P 3

27
, v =

⎧⎪⎨
⎪⎩
− P

3u
if u �= 0

− 3
√
Q if u = 0.

(20)

Then, the roots of the quartic equation become

Y1,2,3,4 =
±s

√
p̄+ 2y ±t

√
−

(
3p̄+ 2y ±s

2q̄√
p̄+2y

)
2

, (21)

where y = −5
6
p̄+ Z (any of Z’s from (19) would be sufficient).

Below, we focus on our iterative procedure. Basically, we assume that the roots are
written in general complex forms such as Yj = aj + ibj , j = 1, 2, 3, 4, and we form
a functional composing of imaginary parts of Yj’s (e.g, F = b21+b22+b23+b24). Note
that this functional also can be interpreted as a function of Δp (e.g, F = F (Δp)).
The objective is to change Δp iteratively until we satisfy F = 0. Clearly, this means
that we obtain all real roots.
Outline of the algorithm :
Given ε
DO k = 1, kmax

Set Δp0 = p− kεpI , Δp1 = p, Δp2 = p+ kεpI
Call Golden Search Alg. to find minimum of F in the interval IΔp = [Δp0,Δp2]
Golden Search routine returns Fmin at Δpmin ∈ IΔp

If Fmin = 0, set Δp = Δpmin (all real roots) go to 10
ENDDO
10 Set λi = Yi, i = 1, 2, 3, 4

We have tested this algorithm for finding the real roots of arbitrary polynomials
whose coefficients are functions of Δp. Our initial findings indicate that the al-
gorithm is quite effective and always guaranties real roots upon the perturbation
of the inter-facial pressure terms. When it is implemented to real two-phase flow
system, this procedure has to be used at the beginning of each Riemann problem
step which is the necessary part of the numerical fluxing procedure of the whole
flow algorithm. With this procedure, since physically more accurate characteristics
wave information is provided, more accurate and more stable numerical fluxes are
calculated making the entire flow solver more accurate and more stable.

8



References

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions. U.S. National
Bureau of Standards, 1964.

[2] T. Theofanous et al. Hyperbolicity, discontinuities, and numerics of the two-fluid
model. ASME report.

[3] R. Saurel and R. Abgrall. A multiphase godunov method for compressible multifluid
and multiphase flows. J. Comput. Phys., 150:425–467, 1999.

9


